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First scientific observations in Grand Canyon made by Powell (1875, 1895). Early
photographs are an essential benchmark for environmental monitoring.

Badger Creek Rapids, 1920s
Marble Canyon, 1872



Gagi ng of LaRue (1916) reported >200 gages in
Upper I stream flow watershed established, many already
. ) abandoned
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54% of total runoff at Lees Ferry in already in the channels of
the upper 15% of the basin (data adapted from lorns et al., 1965)




Early measurements of the
physical structure of the river
date to the 1920s
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The Grand Canyon segment was
the last part of the river system
surveyed.
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... and subsequently measured by USBR
(Stanley, 1951; Borland and Miller, 1960)
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Downstream channel change results from perturbing the balance
between the capacity of a river to transport sediment and the amount
of sediment supplied to the channel
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STASBLE CHANNEL BALANCE

Factors that induce degradation

below dams: Factors that induce aggradation
Reduced sediment supply below dams:
Fining of sediment supply Reduced sediment transport
Increased sediment transport capacity from reduced floods

capacity from elevated baseflows



The stream flow that passes through Grand Canyon
comes from the Rocky Mountains.
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Post-dam flow regime
(1963-2000)

— 12,600 ft3/s (50% of the
time)
Flow greatest in August

3 9 Colorado River at Lee's Ferry, AZ 1967-2000 cms
; t°/s o Of the
time) Colorado River at Lee's Ferry, AZ 1923-1935 cms

Flow lowest in October
(10,200 ft3/s 50% of the
time)

30,000 ft3/s flood occurs

every year, on average
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Short duration high flows occurred in 1965,
1980, 1996, 2004, and 2008

Post-dam floods occurred in
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Elevated base flows have a significant
impact on sand accumulation in Grand
Canyon
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It is essential to understand
the natural sediment supply

nt load downstream from Glen
Canyon Dam

= | ' T Aihsd
7 P Colorado River
; g S * at Lees Femy

Colorado River
at Lees Feny

Paria River

General agreement in the fine sediment
supply rate from Paria (1.4-1.9 x 10° tons)
and Little Colorado River (3.3-3.4 x 10°
tons)

. ' wwo«ado River
wm L Colorado River
near Grand Canyon

Colorado River
near Grand Canyon

Disagreement about sediment contribution

from lesser tributaries:
4.4 x 10° tons (Howard and Dolan, 1981)
0.7 x 10° tons (Randle and Pemberton, 1987)

adapted from Topping (2000)



e Colorado River in Grand Canyon evacuating or accumulating

1trols the large-scale organization of the Colorado River ¢

What is the small'sca

What are the hydraulics of flow in fan-eddy complexes and how do they
change with discharge? How do these changes affect resources?

How does the channel bed adjust at annual and decadal timescales?



What is a sediment mass balance?

A sediment mass balance for Marble Canyon ...

mpUt Glen Canyon + mlet Paria + mlet other tributaries — OUtpUt 60-mile gage =Asand bed + A sand eddies + A sand channel margins

Inputs and outputs = f (water discharge, characteristics of the sediment available
to be transported)

A sand is based on measurements of the places where sand collects



Understanding import and export of fine sediment
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The relation between discharge and sediment transport has wide scatter



and fit one
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dark diamonds = late summer, fall, winter, and
rising limb of annual flood (July 21 - May 31)
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River scientists have debated the significance of these patterns for > 50 years
Colby (1964)



LeesFerryto
Phantom Ranch

Little Colorado River to
Phantom Ranch

Lees Ferryto
Little Colorado River
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Failure to account for hysteresis in sediment
transport relations led to the wrong conclusion
about the sediment mass balance to the post-dam
river.

The 1995 EIS argued that the post-dam river had
been accumulating sediment when we now know
that the river was losing sediment.
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New technologies have
been developed

~ Camera with macro lens and light
- ring-in waterproof housing. . 3

~~Rubin et al.; 2007, 'Sedimentary Geology.
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GRAND CANYON SAND BEACHES

ARJZONA

NEVADA
T

piscak 1980, Stephens and Shoemaker 1987, Schmidt
land Graf 1990, Webb et al. 1991).

Development of water supplies has led to regulation
of many of the world’s rivers (Petts 1984, Gore and
ctts 1989), and large dams are typically constructed
n bedrock canyons. Impoundments destroy upstream
iparian habitats (e.g., Woodbury 1959, Ohmart et al.
1988) and often reduce differences between baseflow
land flood stage, increase daily flow fluctuations, reduce
ediment transport, and alter existing downstream ri-
arian vegetation composition (Baxter 1977, Turner
and Karpiscak 1980, Howard and Dolan 1981, Nilsson
1984, Petts 1984, Williams and Wolman 1984, Ohmart
et al. 1988, Johnson 1993). Hourly varying discharges
produced by hydroelectric power generation create dai-
y “tidal” fluctuations that are accentuated in narrow

Stevens et al., 1995
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What is the large-scale architecture
of the river and its valley?

How does that architecture control
recreation and ecological values?
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Valley architecture affects large-scale patterns in
resource distribution

AREA OF EDDIES AND CHANNEL AT 25,000 CUBIC FEET PER SECOND
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What is the small scale Schmidt and Rubin, 1995
architecture of the river?
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channel-margin eddy bars channel-margin
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: : £ - bistkwier habat
Bauer and Schmidt, 1993 2 | /
A fan-eddy complex includes (1) an area of ponded flow Nttt
Separagon zone fleattachmert zene

upstream from a debris fan, (2) a rapid opposite the
debris fan, (3) an area where flow width expands and an
eddy occurs, and (4) a gravel bar further downstream.

Segaration bar

Schmidt and Grams, 2011






Large-scale geomorphic features can be recognized in aerial photographs and

delineated as polygons for the entire river corridor.
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Flow patterns: what are they and how do they

Schmidt and Graf, 1990

Measured depth averaged horizontal velocities
at peak flow during 2008 HFE

0 00 200 X0 400FEET

0 100 METERS

(Wright and Kaplinski, 2010)
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water surface elevations
(Range 1 surveys)

ations (discharge measurements) ;
[

1965 scouring event

minimum bed elevations
(Range 1 surveys)
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What have been the long-
term changes in the bed of
the channel?

Lees Ferry

RMO\

paria river



Changes at Eminence
Break campsite, 57 km 1935
downstream from the dam

1952, Kent Fro

1952

Many sand
bars have
dramatically
decreased in
size

1978 o

1984

1995, USGS wlichi |




At some sites, sand bar changes have been minimal

(Grapevine Camp river mile 81.8L)
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Based on aerial photograph

7 comparison, the dverage area
(- SR of eddy bars in the 1990s was
\ at least 25% smaller than the
| -26%; 9% average pre-dam conditions.
5 7o) i Fas | |
Z /- /
. ;4 -4%, -47% >95% reduction in sand supply has led
/ ”,,;,"';44"— , | to ~25% reduction in sand bar size ????
S 17%;-25%
r; ’/ *//'.\
/ r.r'f. Al
r‘/} // ]
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- 3 '34%; -45% change in change in sand in
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(Schmidt et al, 2004)
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The old longitudinal profiles of the river have been compared with recent traces



Returning to the big
picture
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Measured sediment evacuation and
accumulation
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Perturbation of sediment
mass balance caused by
dams

(red = S*<1; sediment
deficit)

( green = S*>1; sediment
surplus)

(blue= sediment balance
indeterminate)

(hachure indicates zone of
bed incision)

central New Mexico (1950s)
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Pattern of channel change downstream from

Elephant Butte Dam is typical of the pattern of
change below all dams

Downstream from Elephant Butte Dam, the upper river
incised its bed as much as 1 m within 225 km downstream
from Elephant Butte Dam between ~1917 and ~1933.

Downstream from El Paso/Juarez, the bed aggraded about
0.25 m.
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Grams et al., 2007
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Coarse bouldery rapids prevent bed
adjustment in Grand Canyon. With low
sediment supply and steep channel
slope, mass balance deficit remains
and available fine sediment is
efficiently removed from system.
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Eroded eddy sand bar

No change in bed elevation at gaging station



Channels also changes in width

It is difficult to predict the magnitude of narrowing

d incision

Narrowing with equilibrium conditions

Narrowing with deficit conditions and no bed incision
Narrowing with deficit conditions and bed incision



The Rio Grande above the Rio Cochos, near Presidio

Everitt (1993)



Extreme narrowing — San Rafael River S* > 1 with bed incision




Green River,
near Green
River, UT

15% narrowing
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Controlled floods quickly deplete the available supply.
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Change in suspended sediment
concentration with time during two large
dam releases

Topping, Rubin, various papers
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Topping et al., 2010



The science of establishing environmental flows

E. Rare floods, reset channel, defiver large wood to channel

Breac S0  Eteguenss

D. Decadal floods, maintain channel.
access higher surfaces, recruitment
of later successional species

C. Mod. floods, maintain channel,
dediver sediment, seeds, critters o
flocdplain, deliver OM to channel

A. GW, maintain basefiow, sustain nparian plants

B. Frequent small floods, transport fines,
maintain benthos & spirear habitat

Some flows have critical roles in habitat formation and maintenance

Overbank flows maintain floodplain features
Bankfull flows maintain bars, pool/riffle sequences

Moderate and high flows transport sediment delivered from upstream

Flow variability matters because many species evolved to exploit a mosaic of
habitats




National Research Co

“...instream flow programs need
well-defined and measurable goals to
frame instream flow studies and
evaluate program progress.”
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Discharge (cfs)

Overbank Flow ~ The Science of Instream
Flows: a review of the Texas

instream flow program

High Flow Pulses

Base Flow

Subsistence
Flow

“state-of-the-science programs use natural flow characteristics as
a reference for determining flow needs. Natural river systems
have variable flows (also called flow regimes) within a year and
among multiple years ... This natural variability is important to
sustain aquatic and riparian biota and riverine processes.”



